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Finite-amplitude thermal convection in a horizontal layer with finite conducting 
boundaries is investigated. The nonlinear steady problem is solved by a perturbation 
technique, and the preferred mode of convection is determined by a stability analysis. 
Square cells are found to be the preferred form of convection in a semi-infinite 
three-dimensional region 51 in the (yb, yt, P)-space (yb and yt are the ratios of the 
thermal conductivities of the lower and upper boundaries to that of the fluid and P 
is the Prandtl number). Two-dimensional rolls are found to be the preferred 
convection pattern outside 51. The dependence on yb, yt and P of the heat transported 
by convection is computed for the various solutions analysed in the paper. 

1. Introduction 
In  a recent study of the problem of kite-amplitude thermal convection in a porous 

layer with infinite Prandtl-Darcy number and k i t e  conducting boundaries (Riahi 
1983, henceforth referred to as R83) it was shown, in particular, that square-flow 
pattern convection is preferred in a bounded region r in the (Yb, yt)-space (where y b  
and yt are the ratios of the thermal conductivities of the lower and upper boundaries 
to that of the fluid) and that two-dimensional rolls are the preferred flow pattern 
outside f. The same method of analysis is applied in the present study to steady 
nonlinear Rayleigh-BBnard convection and its stability in the case of finite conducting 
boundaries and arbitrary Prandtl numbers P. An important result of the present 
study is that square cells are the preferred form of convection in a semi-infinite 
three-dimensional region 51 in the (yb, yt, P)-space, while two-dimensional rolls are 
the preferred convection pattern outside 52. 

An analysis similar to the present one has been performed recently by Jenkins & 
Proctor (1984, henceforth referred to as JP) to study the case of symmetric boundary 
conditions for convection at the transition boundary between rolls and squares. The 
present paper studies both cases of symmetric and asymmetric boundary conditions 
for complete domain of convection at arbitrary values of yb and yt, and the 
subsequent results demonstrate that there can exist significant qualitative differences 
between the results of these two cases. Discussion of the results of the present study 
and a comparison with those in JP are given in some detail in $3. 

2. Analysis and results 
We consider an infinite horizontal fluid layer of depth d heated from below and 

bounded above and below by two rigid half-spaces with thermal conductivities At 
and A: respectively. In  the steady static state a constant heat flux traverses the 
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system such that the temperatures T, and T, are attained at the upper and lower 
boundaries of the fluid. Under the usual Boussinesq approximation, the non- 
dimensional forms of the equations for momentum, heat and conservation of mass 
can be simplified by using the general representation 

u = S$+.$h, ( 1 4  

b = V x V x ( z  ), c = V x ( z  ), (1 b )  
for the divergent free velocity vector field u. Here z represent a unit vector in the 
vertical direction. The detailed analysis (Sch1uter;Lortz & Busse 1965) indicates that 
the terms containing $h in the governing equations are insignificant since the toroidal 
component e$ of u is of the order of the mth (m 2 3) power of amplitude 8 of 
convection, and thus cannot enter the analysis discussed here. Therefore we simply 
set $ = 0 in (1) .  Taking the vertical component of the double curl of the momentum 
equation and using (1) in the heat equation yields the following governing equations : 

= P I S -  [S$.V(S$)], (2a) 

where 8 is the deviation of the temperature from its static value, 

R = P(T, - T,) gd3p0 C / V A  

is the Rayleigh number, po is the reference density, c is the specific heat at constant 
pressures, p is the coefficient of thermal expansion, u is the kinematic viscosity, g is 
the acceleration due to gravity, P = upo c/A is the Prandtl number, A is the thermal 
conductivity of the fluid, and A, is the horizontal Laplacian. 

Introducing a Cartesian system of coordinates, with the origin on the midplane of 
the layer and with the z-coordinate in the vertical direction, the boundary conditions 
for 8 and q5 can be written as 

$ = - = O  a$ a t z = + &  
aZ 

where yb = A:/A, yt = A t / A ,  and 0; and 0: describe the deviations from the static 
temperature distribution in the spaces z < -4 and z 2 4 respectively. 

The linear planeform function w(x,  y) has the representation 
N N 

n--N n--N 
w(x,y)=  X c n w n =  2 cnexp(iKn*r), (4) 

A,w = -u'w, (WW) = 1. ( 5 )  

and satisfies the relation 

Here a is the horizontal wavenumber, angular brackets indicate an average over the 
fluid layer, r is the position vector, and the horizontal wavenumber vectors K, satisfy 
the properties 
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Yn = Y, Yt = 0 

Y 
0 
o.Ooo1 
0.001 
0.01 
0.1 
0.4 
0.7 
1 
4 
7 
10 
100 
lo00 

03 

~ 

RC a, 

720 0 
725.2 0.001 
728.1 0.20 
756.3 0.80 
873.8 1.40 
1073.8 1.85 
1190.2 2.35 
1270.9 2.55 
1533.8 2.90 
1603.8 3.10 
1630.2 3.10 
1701.9 3.11 
1708 3.13 
1708 3.13 

RC a, 

1300 2.70 
1300.1 2.70 
1303.8 2.75 
1315.5 2.78 
1331.9 2.80 
1410.1 2.85 
1463.8 2.95 
1497.5 2.95 
1620.9 3.05 
1657.5 3.10 
1673.8 3.12 
1707.5 3.12 
1708 3.13 
1708 3.13 

RC a, 

720 0 
724.1 0.001 
726.3 0.15 
746.3 0.80 
821.9 1.35 
940 1.75 
1010.1 2.10 
1057.5 2.10 
1203.8 2.45 
1241.9 2.48 
1257.5 2.48 
1291.9 2.50 
1300.1 2.60 
1300.5 2.60 

TABLE 1. Values of R, and a, with boundaries of different conductivity 

The coefficients c, satisfy the conditions 

N 
E c,c;= 1, c;=c-,, 

n--N 

where N is a positive integer and the asterisk indicates the complex conjugate. 
We shall discuss the analysis of the problem, but try to avoid going into details 

since the main structure of the analysis and the method of solutions are essentially 
the same as in R83. 

The steady small-amplitude convection analysis is based on the following expansions 
for 8, g5 and R in powers of e :  

(3 = €(;)+€(;)+... ,\ 

R = RO+~Rl+eaR2+ ... . J 
When (8) is inserted into (2) and (3) and the quadratic terms are disregarded, the 
linear system of the problem is found (see the Appendix). Following R83 and the 
results given in the Appendix, the linear system leads to an equation for R,, Yb, yt 
and a. R, is a complicated implicit function of a, yt and Y b  through this equation, 
which is symmetiic with respect to yb and yt. The same kind of numerical 
computations as those discussed in R83 are done here to determine the minimum 
value R, of R, with respect to a attained at some a = a, for given Y b  and Yt. Values 
of R, and a, for different values of yt and Y b  are presented in table 1. The qualitative 
features of these linear results are the same as those discussed in R83. The solvability 
condition for the equations of order 8, which are given in the Appendix, yields R, = 0 
(see the Appendix). The solvability condition for the equations of order e3 (see the 
Appendix) yields the following set of equations: 

N 

m--N 
at R2(g51 el> c, = E T,, c ,  C ,  ~2 ( n  = - N ,  . . ., - 1,1,. . ., N ) .  (9) 
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The symmetric matrix T,, given in (9) has a lengthy expression, which will not be 
given here, and is a function of R,, a,, yb, yt, P and $,,, where 

$,, = a-2(k;kn). (10) 
Equation (9), together with (7), represents an inhomogeneous system of 2N+1 
nonlinear algebraic equations for the 2N coefficients c, and the coefficient R,. The 
general solution of this system is not known, but a simple set of solutions can be 
derived in the so-called 'regular' case, in which all angles between two neighbouring 
k-vectors are equal. The solution is simply 

1 
I c , l 2 = D ,  i = l ,  ..., N ,  ( 1 1 4  

N 

m-1 
2NR,aa<#le1) = E ( T l m + T l , - m ) .  ( I lb)  

(12) 

Using the approximate relationship 

H = (e(2.u))  = e2a:(8, #J x aa(R- R,) Ri1(e1 #J 
for the heat transported by convection, we fmd from ( l l b )  and (12) the following: 
in the case of the two-dimensional solution in the form of rolls 

N = 1, H,  = HrollS(R-R,)-' = 2a~((#1~1))2(T11+T1,~1)-1; ( 1 3 4  

in the case of square-pattern convection 

N = 2, } (13b) 
$', = 0, 

H,  = Hsquares (R-R;') = 4a$(($1e1))2 ~ ~ l l + ~ l , - l + ~ l , + ~ l , - , ~ ~ ' ;  

and in the case of hexagonal cells 

H h -  - HheXagOnS (R-  R,)-l = 6~t;((#~ e l ) ) ,  (Tll + Tl, + T1,+T1, -2+5"13+ T1,-3)-'-J 
(13c) 

Since the expression for T,, turns out to be a polynomial of second degree in P I ,  

N = 3, $12 = $23 = $31 = !i, 

we define 

where the coefficients H,,, H,, and Hhi (i = 1,2 ,3)  are functions of a,, R,, yb and yt. 
The values of these coefficients are computed for the following three different cases: 
(I) both boundaries have the same conductivity y ,  yt = yb = y ;  (11) one of the 
boundaries (say the upper one) has infinite conductivity, the other has arbitrary 
conductivity y ,  yt = GO, yh = y ;  (111) one of the boundaries (say the upper one) is 
non-conducting, the other has arbitrary conductivity y ,  yt = 0, yb = y.  The values 
of Hrr, H,, and Hh, are presented in tables 2 ,  3 and 4 respectively. The results agree 
well with those given by Schliiter et at. (1965) for the case where y b  = yt = co and 
with those computed by Busse & Riahi (1980) for the case where y b  = yt = y < 1. 
For given values of y and P, we have found that either H ,  > Hh or H ,  > Hh. 
H ,  = max (H,,  H,, Hh) for all y < y1 (yl < 1.5 for case I, y1 = 0 for case 11, and 
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Y 
0 
0.o001 
0.001 
0.01 
0.1 
0.4 
0.7 
1 
4 
7 
10 
100 
lo00 

00 

Hr1 

1.143 
1.143 
1.131 
0.987 
0.787 
0.665 
0.619 
0.616 
0.653 
0.669 
0.677 
0.698 
0.699 
0.699 

Hra 
-0.003 

-0.001 
-0.008 
-0.015 
-0.016 
-0.014 
-0.012 
-0.008 
-0.006 
-0.006 
-0.005 
-0.005 
-0.005 

0 

Hra 
0.001 
0 
0 
0.001 
0.003 
0.006 
0.007 
0.007 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 

HI1 
0.734 
0.734 
0.724 
0.715 
0.705 
0.680 
0.668 
0.667 
0.678 
0.685 
0.689 
0.699 
0.699 
0.699 

4 2  

-0.007 
-0.007 
-0.007 
- 0.007 
-0.007 
-0.007 
-0.007 
-0.007 
-0.006 
- 0.005 
-0.005 
-0.005 
-0.005 
- 0.005 

Hra 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 
0.008 

HI1 
1.143 
1.143 
1.136 
0.989 
0.822 
0.744 
0.712 
0.714 
0.725 
0.748 
0.761 
0.787 
0.762 
0.763 

Hra 
-0.003 

0 
0 

- 0.008 
-0.014 
-0.015 
-0.014 
-0.013 
- 0.009 
-0.008 
-0.007 
-0.005 
-0.006 
-0.006 

Hra 
0.001 
0 
0 
0.001 
0.003 
0.005 
0.005 
0.006 
0.007 
0.007 
0.007 
0.007 
0.007 
0.007 

TABLE 2. Values of HI, ,  Hra and Hrs with boundaries of different conductivity 

Y 
0 
0.o001 
0.001 
0.01 
0.1 
0.4 
0.7 
1 
4 
7 
10 
100 
lo00 

00 

4, 
0.786 
0.786 
0.780 
0.711 
0.623 
0.590 
0.599 
0.618 
0.705 
0.732 
0.744 
0.776 
0.779 
0.779 

Ha2 

-0.001 
0 
0 

-0.004 
- 0.006 
-0.001 
0.008 
0.013 
0.029 
0.034 
0.035 
0.040 
0.040 
0.040 

Has 
0.002 

-0.OOO 
O.OO0 
0.004 
0.01 1 
0.022 
0.034 
0.040 
0.054 
0.059 
0.060 
0.063 
0.064 
0.064 

H,, 4 2  

0.865 0.026 
0.865 0.026 
0.838 0.026 
0.821 0.025 
0.802 0.026 
0.760 0.027 
0.736 0.029 
0.734 0.030 
0.747 0.035 
0.758 0.037 
0.764 0.038 
0.779 0.040 
0.779 0.040 
0.779 0.040 

Hsa 
0.043 
0.043 
0.043 
0.044 
0.045 
0.048 
0.052 
0.053 
0.059 
0.061 
0.062 
0.064 
0.064 
0.064 

H,, 
0.786 
0.786 
0.782 
0.713 
0.650 
0.686 
0.705 
0.749 
0.841 
0.912 
0.954 
1.031 
0.948 
0.949 

H,, 
-0.001 

0 
0 

-0.004 
- 0.006 
-0.002 
0.002 
0.006 
0.019 
0.024 
0.027 
0.032 
0.030 
0.030 

TABLE 3. Values of Ha,, H,, and Haa with boundaries of different conductivity 

H S S  

0.002 
0 
0 
0.003 
0.010 
0.018 
0.023 
0.026 
0.036 
0.038 
0.038 
0.040 
0.042 
0.042 

y1 < 0.6 for case 111). H, = max (Hr, H,, Hh) for all y > yl. y1 is found to decrease with 
decreasing P, and yl+O aa P+O. The qualitative features of H,, H ,  and Hh (as well 
as R, and a,) are found to be symmetric with respect to y,, and yt. 

The stability of q5 and 0 with respect to arbitrary three-dimensional disturbances 
$ and 0 is investigated in the same way as discussed in R83. The equations for the 
time-dependent disturbances are given by 

(154 A,( V4J - 8- d2J) = P ' 6  [6$* V( 64) + 64 V( a$)], 

( v ~ - c ) ~ - R A , $  = 6$-ve+6q5-v& (15b) 
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Y 
0 
0.0001 
0.001 
0.01 
0.1 
0.4 
0.7 
1 
4 
7 

10 
100 

lo00 
a, 

Hhl 

1.143 
1.134 
1.135 
1.039 
0.895 
0.806 
0.777 
0.780 
0.835 
0.855 
0.864 
0.891 
0.893 
0.893 

HhZ 

0.032 
0.037 
0 

-0.005 
-0.007 

0 
0.013 
0.020 
0.038 
0.044 
0.046 
0.049 
0.050 
0.050 

Hh3 

0.060 
0.051 
0 
0.004 
0.0 12 
0.023 
0.036 
0.042 
0.057 
0.063 
0.064 
0.068 
0.068 
0.068 

Hhl 

0.956 
0.956 
0.939 
0.926 
0.91 1 
0.875 
0.857 
0.855 
0.867 
0.876 
0.881 
0.893 
0.893 
0.893 

Hh2 

0.031 
0.031 
0.031 
0.031 
0.032 
0.034 
0.037 
0.038 
0.045 
0.047 
0.048 
0.060 
0.050 
0.050 

Hh3 

0.045 
0.045 
0.046 
0.046 
0.047 
0.051 
0.055 
0.056 
0.063 
0.065 
0.066 
0.068 
0.068 
0.068 

Hh 1 

1.143 
1.065 
1.138 
1.041 
0.929 
0.900 
0.886 
0.903 
0.942 
0.980 
1.003 
1.046 
1.003 
1.004 

HhZ Hh3 

0.032 0.050 

0 0 
-0.087 0.002 

-0.005 0.004 
-0.007 0.011 
-0.002 0.019 

0.004 0.024 
0.008 0.027 
0.022 0.038 
0.026 0.040 
0.027 0.040 
0.031 0.042 
0.031 0.044 
0.031 0.044 

TABLE 4. Values of Hhf, Hh2 and Hh3 with boundaries of different conductivity 

where we have introduced a growth rate u by a/a t  = u. The stability equations are 
solved by the following expansions 

8 8, (;) = (:)+. (!) +€2(  !;)+ ... . 

We restrict our attention to the most dangerous disturbances (where R, = R, and 
a = a,). Then the most critical disturbances are characterized by u, = 0. Using the 
representation a, 

G(z, y) = X En exp (ik;r) 
n --a 

for the horizontal dependence of the general three-dimensional disturbances, we 
consider (15) in orders B" (n 2 1). The possibility of a non-vanishing positive 
coefficient un appears first at order s2, where the solvability condition (see the 
Appendix) yields the following system of equations: 

where Tnm = Tnm + T n ,  -m.  

This system is of the same form as the one determined in R83. Following R83, it 
follows that a steady solution for N > 1 is unstable if 

Prim > Pnn > 0 (m > n) (19) 

and that steady rolls (N = 1) are unstable if the steady squares (N = 2) are stable 
or vice versa. The condition (19) has been computed numerically for different integers 
N and various values of $,, (0 < I $,, I < 1). In all cases of N and $,, that have 
been investigated the condition (19) was found to be valid, with the exception of the 
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FIGURE 1. Region of stable square cells in the (yb, yt, P)-space coordinate system. 

case N = 2, $m,, = 0 (m =+ n).  This latter case corresponds to squares. Hence all 
three-dimensional solutions for N > 2 are unstable. For squares it was found that 
(19) does not hold for those values of P, yb  and yt that yield H,  > H,. Numerical 
computations of the expression for u2 for disturbances that may or may not coincide 
with the basic vectors of the steady motions in the forms of squares and rolls yield 
a negative u2, provided that P, yb and yt are chosen such that H ,  > H, and H ,  > H ,  
respectively. The general conclusion is that rolls and squares are the only possible 
stable solutions. Rolls are the only stable solutions in the (yb, yt, P)-space for which 
H ,  2 H,. Squares are the only stable solutions in the (Yb, yt, P)-space for which 
H, 2 H,. 

In order to determine the stability boundary for rolls or squares in the 
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(Yb, yt, P)-space coordinate system, the equation 

P12 = Tll (equivalent to H ,  = H,) (20) 

is solved numerically, and the results are shown in figure 1. Squares are the stable 
solutions in the semi-infinite three-dimensional region B which begins at the origin 
y b  = yt = P = 0. Several cross-sectional areas of B (P = 0.025, 0.1, 0.3, 0.8, 7,  100) 
are shown in the figure. The area A of the cross-section of B with plane P = constant 
is quite small in the range 0 < P < 0.1. However, A increases rapidly with increasing 
P in the range 0.1 < P < 7. For P 2 100 the area A remains nearly unchanged as 
P increases. The stability boundary is also seen to be symmetric with respect to Y b  
and yt. 

3. Discussion 
We investigated the problem of weakly nonlinear convection in a horizontal fluid 

layer of arbitrary P,  yb and yt in the limit of very large thicknesses Dt and Db of 
the upper and lower rigid surfaces respectively that bound the fluid layer. Using the 
method of Schliiter et al. (1965), we solved the nonlinear problem and determined 
the preferred mode of convection. The analysis led to the following conclusions. 
Square cells are the preferred form of convection in a semi-infinite three-dimensional 
region 0 in the (yb, yt, P)-space. Two-dimensional rolls are the preferred form of 
convection outside 0. The region of stable squares is quite small for P < 0.025 and 
disappears as P - t O  (consistent with the earlier result given by Riahi (1980) for P = 0 
and Y b  = yt < 1). The region of stable squares is largest and nearly independent of 
P for P 2 7. Also for large P (P 2 7), the horizontal size of stable square cells can 
be comparable to the size of the layer depth, but the horizontal size of stable square 
cells is always much larger than the size of the layer depth for small P (P 4 0.1). The 
region of stable squares is found to be most sensitive to P in the range 0.1 < P < 7. 
The stable solution is found to transport the maximum amount of heat. The heat 
transported by convection and the critical values of R, and a, are found to be more 
sensitive to yb and yt in the midrange of these parameters. Qualitative features of 
Rayleigh-BBnard convection appear to be symmetric with respect to Y b  and yt. The 
only preferred flow pattern is that of either squares or rolls (but not both), and no 
hysteresis effect is found in the present problem. If yb or yt or both are sufficiently 
large, then the only stable flow pattern is that of two-dimensional rolls. It is also 
found that the qualitative results of the problem for asymmetric boundary con- 
ditions (Yb + yt )  can be quite different from those for symmetric boundary conditions 
(Yb = yt). In particular, squares are unstable for the case of a strongly asymmetric 
boundary conditions where Y b  and yt are sufficiently different. 

In  the study of the transition from roll to square-cell solutions in the weakly 
nonlinear convection in a layer with symmetric boundary conditions (yb = yt = y )  
presented in JP, a perturbation technique, a finite-difference method and an iteration 
technique were employed to calculate R,, a, and the critical values of y, (at which 
transition from rolls to squares takes place) as functions of P and D ( D  E Dt = Db). 
The linear result for the values of R, and a, presented in JP for D = 1 agrees well 
with the corresponding result of the present study (columns 2 and 3 in table 1) for 
D % 1. Another result in JP is about the effects of D on y,, which demonstrates that 
y, = O(D) for small D,  while y, is independent of D for large D. This result is in 
agreement with the earlier result derived by Busse & Riahi (1980), which indicated 
that various flow features are independent of D as long as D is considerably larger 
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than one. Figure 3 in JP shows variations of yc with respect to P for both cases D = 1 
and D % 1. yc becomes independent of P for P > 10, and approaches one for 
large P. The results for yc (D % 1) given in JP are in qualitative agreement with the 
corresponding results of the present study for the case y,, = yt. There do not appear 
to be other similarities between the results of the present study and that discussed 
in JP. The work presented in JP is mainly for yc and its variations with respect to 
P and D for a fluid layer with symmetric boundary conditions, while the present paper 
studies both cases of symmetric and asymmetric boundary conditions for arbitrary 
values of P, yb and yt, and presents results for the asymmetric boundary conditions, 
which can sharply differ qualitatively from the corresponding results for the 
symmetric boundary conditions. In  addition, the present study yields results for 
various flow features for the complete domain of small-amplitude convection with 
arbitrary conducting boundaries, which can be of particular interest to experiment- 
alists, and it is hoped that i t  will stimulate experimental studies on the subject. 

Appendix 
To order 6, the equations (2) and the boundary conditions (3) become 

A2(V4$, - 6,) = 0, 

v2el - R, +1 = 0, 

where y+ = yt and y- E yb (see R83 for the derivation of the thermal boundary 
conditions). Equations (A 1 a, b) yield 

where 
6 

t-1 

6 

(-1 

f(4 = x 4 exp (rt 2) <f2) = 1, 

g(z )  = X (rt-a2)2di exp(rtz), 

r1 = - r4 = [a2 - (R, a2) !$ ,  

r2 = - rs = [a2 + (R, a2)t exp (-;in)$ 

r, = - r, = [a2 + (R, a2)t exp (iix)]k 

When (A 2) and the expressions forf(z) and g(z)  given in (A 3) are used in (A 1) they 
yield a system of six linear non-homogeneous algebraic equations for the coefficients 
d, (i = 1 ,  . . . ,6). This system of equations together with the normalization condition 
for f(z) given in (A 3) lead to an implicit functional dependence of R,, with respect 
to a, yb and yt. 

To order e2, the equations (2) and the boundary conditions (3) become 
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where 8,, (defined in R83) has the same form as 02, provided that the horizontal 
dependence of 8, is multiplied by [2(a2+ K,*K,)]k The reader is referred to R83 for 
discussion on the boundary conditions for 8. Multiplying (A 4a)  by $1, (A 4b)  by 
R;'8,, adding, averaging over the whole layer and using the procedure used by 
Schluter et al. (1965) yields R, = 0. The expressions for the solutions 8, and $, that 
satisfy (A 4) are quite lengthy and will not be given here. The complete expressions 
for these quantities as well as the lengthy expressions for some other quantities are 
given in an internal report which can be made available to the reader upon request. 

To order e3, (2) become 

A2(V4$, - 0,) = p-'[S. (&$I V6$, + a$,* V6$, )I, 
V28, - Ro A, 9,- R, A, $, = S$;VB,+ 64,' V8,. 

(A 5 4  

(A 5b) 

The solvability condition for (A 5) requires us to define the following special solutions 

Multiplying (A 5a) by $Fn, (A 5 b )  by R i l  8,*,, adding and averaging over the whole 
layer yields 

-Rz(efnAz$1) = (e,*,(a$,.ve,)>+p-'Ro($fn S.(S$,*VS$,+S$,*Vs$,)). (A 7) 

The right-hand side in (A 7) contains average products of the form (WE w, wz w,), 
which differ from zero only if 

-Kn+Km+KZ+Kp = 0. (A 8) 

Following R83 and using (A 8), (A 7)  can be simplified to the form given in (9). 
To order e2, (15) become 

A2(V4$, - g3 - U, VZ4,) = p-'S. [@,*VS$, + 6$l*VS$2 + S&*VS$, + 8$,*VS$,], 
(A 9a) 

V2g3 - U, gl - R, A, 4,- R, A, 4, = 84,. V8, + S$,*V8, + S$,*Ve, + 6$,* VJ1. (A 9b)  

Here the solutions 0, and 6, have the same form as the corresponding steady solutions 
8, and $,, provided the horizontal dependence of the steady solutions is replaced by 
the expression (17). Likewise, the solutions 0, and $, have the same form as the 
corresponding steady solutions 8, and $,, provided the coefficients c l c p  in the 
horizontal-dependent terms in the expressions for these solutions are replaced by 
2c", c, ( I  = - 00, . . . , - 1, 1, . . . , co and p = - N ,  . . . , - 1, 1, . . . , N), and the horizontal- 
independent terms in the expressions for the steady solutions are multiplied by the 
expression X K - - N  2c, C z .  Multiplying (A 9a) by $fn, (A 9 b )  by R;' t9:,,, adding, 
averaging over the whole layer, using (A 8) and following the same procedure as in 
R83 yields (18). 
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